Highly oscillating thin obstacles

Minha Yoo
Department of Mathematical Sciences Seoul National University, Korea

December 1, 2012
(joint work with Ki-Ahm Lee and Martin Strömqvist)

Obstacle Problems

Let Ω be a bounded, open and connected domain in \mathbb{R}^{n}.

Definition

For any given function $\psi \in \mathcal{C}^{2}(\Omega)$ (or $\psi \in H^{1}(\Omega)$), known as the obstacle, and $g \in H^{1}(\Omega)$ satisfying the compatibility condition $\psi \leq g$ on $\partial \Omega$, we say u is the solution of the obstacle problem if u is the minimizer of the functional

$$
J(v)=\int_{\Omega}|\nabla v|^{2}+2 f v d x
$$

where v is in $K=\left\{v \in H^{1}(\Omega): v \geq \psi\right.$ in $\left.\Omega, \quad v-g \in H_{0}^{1}(\Omega)\right\}$.

Obstacle Problems

If the obstacle is only defined on ($\mathrm{n}-1$)-dimensional manifold Γ then we call such problems Signorini problem or Thin obstacle problem.

Definition

For any given function $\psi \in \mathcal{C}^{2}(\Omega)$ (or $\left.\psi \in H^{1}(\Omega) \cap L^{\infty}(\Omega)\right), g \in H^{1}(\Omega)$ satisfying the compatibility condition $\psi \leq g$ on $\partial \Omega$, we say u is the solution of the obstacle problem if u is the minimize of the functional

$$
J(v)=\int_{\Omega}|\nabla v|^{2}+2 f v d x
$$

where v is in $K=\left\{v \in H^{1}(\Omega): v \geq \psi\right.$ on $\left.(\Gamma \cap \Omega), \quad v-g \in H_{0}^{1}(\Omega)\right\}$.
In this talk, we assume that $n \geq 3$ and $g=0$.

Periodical Background

For a given open subset T of $B_{\frac{1}{2}}$, we define T_{ε}^{k} by $\varepsilon k+a_{\varepsilon} T$ and $\mathcal{T}_{\varepsilon}$ by $\cup T_{\varepsilon}^{k}$ where $k \in \mathbb{Z}^{n}$ and $a_{\varepsilon}<\varepsilon$.

Periodical Background

For any subset D of \mathbb{R}^{n} and for any $\psi \in H^{1}\left(\mathbb{R}^{n}\right)$, we define $D_{\varepsilon}=D \cap T_{\varepsilon}$ and

$$
\psi_{\varepsilon}=\psi \chi_{D_{\varepsilon}}= \begin{cases}\psi(x) & \text { if } x \in D_{\varepsilon} \\ 0 & \text { if } x \notin D_{\varepsilon}\end{cases}
$$

Highly Oscillating Obstacle Problem

Let u_{ε} be the solution of the obstacle problem with obstacle ψ_{ε}. More precisely, u_{ε} is the minimizer of the functional

$$
J(v)=\int_{\Omega}|\nabla v|^{2}+2 f v d x
$$

for $v \in K_{\varepsilon}=\left\{v \in H^{1}(\Omega) ; v \geq \psi_{\varepsilon}\right.$ in $\left.\Omega, \quad v-g \in H_{0}^{1}(\Omega)\right\}$.
Then our main problem is to determine the limit u of the solution u_{ε} in terms of a limit equation it solves.

Definition

(1) If $D=\Omega$, then we call $\left(M_{\varepsilon}\right)$ a highly oscillating obstacle problem.
(2) If $D=\Gamma,(n-1)$-dimensional manifold, then we call $\left(M_{\varepsilon}\right)$ a highly oscillating thin obstacle problem.

Actually, the limit behavior of u_{ε} is related with the decay rate a_{ε} of holes.

Averaged Capacity

Definition

Let A be any compact subset of \mathbb{R}^{n}. Then, for any $n \geq 3$, the capacity of A is defined as follow

$$
\operatorname{cap}(A)=\inf \left\{\int_{\mathbb{R}^{n}}|\nabla \rho|^{2} d x: \rho \in \mathcal{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right), \rho \geq 1 \text { on } A\right\}
$$

Now we define the new concept of the capacity to describe the equation that satisfies the limit u of u_{ε}.
Let Γ be a hyper plane in \mathbb{R}^{n} with normal $\nu \in S^{n-1}$. and let

$$
\Gamma(s)=\Gamma_{\nu}(s)=\Gamma+s \nu
$$

be the family of hyper-planes.

Averaged Capacity

Averaged Capacity

Definition (Averaged capacity)
If $T \in \mathbb{R}^{n}$ and $\Gamma=\left\{\left(x-x_{0}\right) \cdot \nu=0\right\}$,

$$
f(s)=\operatorname{cap}(T \cap \Gamma+s \nu)
$$

is integrable, then we set

$$
\operatorname{cap}_{\nu}(T)=\int_{-\infty}^{\infty} f(s) d s
$$

and call this quantity the averaged capacity of T with respect to ν.

Main Theroem

Theorem

Let $n \geq 3$ and u_{ε} be the solution of $\left(M_{\varepsilon}\right)$ when $D=\Gamma=\left\{x \in \mathbb{R}^{n}:\left(x-x_{0}\right) \cdot \nu=0\right\}$. We set we set $a_{\varepsilon}=\varepsilon^{\frac{n}{n-1}}$. Then $u_{\varepsilon} \rightarrow u$ weakly in $H_{0}^{1}(\Omega)$ and u is the unique minimizer of

$$
\begin{equation*}
J_{\nu}(v)=\int_{\Omega}|\nabla v|^{2}+2 f v d x+\operatorname{cap}_{\nu}(T) \int_{\Gamma}\left((\psi-v)^{+}\right)^{2} d \sigma, \quad v \geq 0 \tag{M}
\end{equation*}
$$

for a.e. $\nu \in S^{n-1}$.
In particular, if f is non-negative, then u is the solution of

$$
-\triangle u+\operatorname{cap}_{\nu}(T)(\psi-u)^{+} d \sigma+f=0
$$

Related Works

(1) In 1997, Cioranescu and Murat proved that if $D=\Omega$ and $a_{\varepsilon}=\varepsilon^{\frac{n}{n-2}}$, then the solution u_{ε} of $\left(M_{\varepsilon}\right)$ converges to u and u satisfies the following equation:

$$
-\triangle u+\mu u=f \text { in } \Omega
$$

for some constant μ.
(2) They also proved that if $D=\left\{x_{n}=0\right\}$ and $a_{\varepsilon}=\varepsilon^{\frac{n-1}{n-2}}$, then the limit u satisfies

$$
-\triangle u+\mu u d \delta_{\left\{x_{n}=0\right\}}=f \text { in } \Omega
$$

- In 2008, Caffarelli and Lee proved the similar result for the fully nonlinear operator F when $D=\Omega$. The decay rate a_{ε} is determined by the constant λ that makes

$$
V(x)=|x|^{-\lambda} \Phi\left(\frac{x}{|x|}\right)
$$

a solution of $F\left(D^{2} V\right)=0$ except the singular point.
(1) In 2009, Caffarelli and Mellet proved the similar result when $T=T(k, \omega)$ is distributed randomly. If $\operatorname{cap}(T(k, \omega))$ is stationary ergodic, $D=\Omega$, and $a_{\varepsilon}=\varepsilon^{\frac{n}{n-2}}$ then we have similar result to (1) and the limit doesn't depend on ω.

Corrector

Proposition (Existence of Corrector)

Let $\Gamma=\left\{x \in \mathbb{R}^{n} ;\left(x-x_{0}\right) \cdot \nu=0\right\}$ and let $a_{\varepsilon}=\varepsilon^{\frac{n}{n-1}}$. Then, for almost all $\nu \in S^{n-1}$, there exists a sequence of functions w_{ε} satisfying
(1) $w_{\varepsilon}=1$ on Γ_{ε}
(2) $w_{\varepsilon} \rightarrow 0$ weakly in $H_{0}^{1}(\Omega)$
(0) For any sequence $z_{\varepsilon} \in H_{0}^{1}(\Omega)$ such that $z_{\varepsilon}=0$ on $\Gamma_{\varepsilon},\left\|z_{\varepsilon}\right\|_{L^{\infty}(\Omega)} \leq C$ and $z_{\varepsilon} \rightarrow z$ weakly in $H_{0}^{1}(\Omega)$ there holds

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}<\triangle w_{\varepsilon}, \rho z_{\varepsilon}>_{H^{-1}, H_{0}^{1}}=\operatorname{cap}_{\nu}(T) \int_{\Gamma} \rho z d \sigma \tag{2.1}
\end{equation*}
$$

for all $\rho \in \mathcal{C}_{0}^{\infty}(\Omega)$.

Proof of Theorem

Lemma (Lower semicontinuity of the Energy)
Let $z_{\varepsilon} \in H_{0}^{1}$ be a sequence which is bounded uniformly on $\varepsilon, z_{\varepsilon} \rightarrow z$ weakly in H_{0}^{1} and $z_{\varepsilon}=0$ on Γ_{ε}. Then, we have

$$
\liminf \int_{\Omega}\left|\nabla z_{\varepsilon}\right|^{2} d x \geq \int_{\Omega}|\nabla z|^{2} d x+\operatorname{cap}_{\nu}(T) \int_{\Gamma} z^{2} d \sigma
$$

The last term comes from the choice of the test function z_{ε}.
Sketch of proof.
From the proposition,

$$
\int_{\Omega}\left|\nabla w_{\varepsilon}\right|^{2} \rho^{2} \rightarrow \operatorname{cap}_{\nu}(T) \int_{\Gamma} \rho^{2} d \sigma, \quad \rho \in \mathcal{C}_{0}^{\infty}(\Omega)
$$

Apply this to $0 \leq \int_{\Omega}\left|\nabla\left(z_{\varepsilon}-w_{\varepsilon} \rho\right)\right|^{2} d x$ and then apply $\rho=z_{\varepsilon}$. Then, we get the conclusion.

Proof of Theorem

Lemma

Let u_{ε} be solution of $\left(M_{\varepsilon}\right)$. Then we have

$$
\liminf \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} d x \geq \int_{\Omega}|\nabla u|^{2} d x+\operatorname{cap}_{\nu}(T) \int_{\Gamma}\left((\psi-u)^{+}\right)^{2} d \sigma
$$

Proof.
We have the identity $u_{\varepsilon}=-\left(\psi-u_{\varepsilon}\right)^{+}+\left(\psi-u_{\varepsilon}\right)^{-}+\psi$. Since $u_{\varepsilon} \geq \psi$ on Γ_{ε}, $\left(\psi-u_{\varepsilon}\right)^{+}=0$ on Γ_{ε}, we have
$\liminf \int_{\Omega}\left|\nabla\left(\psi-u_{\varepsilon}\right)^{+}\right|^{2} d x \geq \int_{\Omega}\left|\nabla(\psi-u)^{+}\right|^{2} d x+\operatorname{cap}_{\nu}(T) \int_{\Gamma}\left((\psi-u)^{+}\right)^{2} d \sigma$.
Then, the lemma follows from above and the general weak lower semi-continuity.

Proof of Theorem

Lemma

Let u_{ε} be solution of $\left(M_{\varepsilon}\right)$. Then we have

$$
\limsup \int_{\Omega}\left|\nabla u_{\varepsilon}\right|^{2} d x \leq \int_{\Omega}|\nabla v|^{2} d x+\operatorname{cap}_{\nu}(T) \int_{\Gamma} v^{2} d \sigma .
$$

for all $v \in \mathcal{C}_{0}^{\infty}(\Omega)$ and $v \geq 0$.
Sketch of Proof.
(1) For any given v, let $v_{\varepsilon}=\left(w_{\varepsilon}-1\right)(\psi-v)^{+}+(\psi-v)^{-}+\psi$. Then

$$
v_{\varepsilon} \in K_{\varepsilon}=\left\{v \in H_{0}^{1}(\Omega) ; v \geq \psi_{\varepsilon}\right\} .
$$

(2) Since w_{ε} converges to 0 weakly in $H_{0}^{1}(\Omega), v_{\varepsilon} \rightarrow v$ weakly in $H_{0}^{1}(\Omega)$.
(3) From the minimality of $u_{\varepsilon}, J\left(u_{\varepsilon}\right) \leq J\left(v_{\varepsilon}\right)$.
(- Finally, by using the proposition, we have

$$
\limsup J\left(v_{\varepsilon}\right) \leq J_{\nu}(v)
$$

Proof of Theorem

Proof of Main Theorem.
(1) Since ψ^{+}is in the set K_{ε} for all $\varepsilon, J\left(u_{\varepsilon}\right) \leq J\left(\psi^{+}\right)$and hence $\left\|u_{\varepsilon}\right\|_{H^{1}}$ is bounded uniformly on ε. From this, we can extract a subsequence $u_{\varepsilon_{j}}$ which converges to u weakly in H^{1}.
(2) From previous two lemmas,

$$
\begin{aligned}
& \int_{\Omega} \frac{1}{2}|\nabla u|^{2}+f u d x+\operatorname{cap}_{\nu}(T) \frac{1}{2} \int_{\Gamma}\left((\psi-u)^{+}\right)^{2} d \sigma \\
& \leq \liminf _{\varepsilon \rightarrow 0} \int_{\Omega} \frac{1}{2}\left|\nabla u_{\varepsilon}\right|^{2}+f u_{\varepsilon} d x \leq \limsup _{\varepsilon \rightarrow 0} \int_{\Omega} \frac{1}{2}\left|\nabla u_{\varepsilon}\right|^{2}+f u_{\varepsilon} d x \\
& \leq \int_{\Omega} \frac{1}{2}|\nabla v|^{2}+f v d x+\operatorname{cap}_{\nu}(T) \int_{\Gamma}\left((\psi-v)^{+}\right)^{2} d \sigma,
\end{aligned}
$$

for all $v \in \mathcal{C}_{0}^{\infty}(\Omega)$ with $v \geq 0$.

Construction of Correctors

We are going to construct w_{ε} in proposition by defining w_{ε} locally near the intersection between Γ and T_{ε}^{k}.
Let $\gamma_{\varepsilon}^{k}=\Gamma \cap T_{\varepsilon}^{k}$ and let w_{ε}^{k} be the restriction of w_{ε} to $Q_{\varepsilon}(\varepsilon k)$ given by

$$
\begin{cases}w_{\varepsilon}^{k}=1 & \text { on } \gamma_{\varepsilon}^{k} \\ \Delta w_{\varepsilon}^{k}=0 & \text { in } B_{\varepsilon / 2} \backslash \gamma_{\varepsilon}^{k} \\ w_{\varepsilon}^{k}=0 & \text { in } Q_{\varepsilon} \backslash B_{\varepsilon / 2},\end{cases}
$$

Construction of Correctors

If we define $w_{\varepsilon}=\sum_{k} w_{\varepsilon}^{k}$, the energy of w_{ε} is given by

$$
\int_{\Omega}\left|\nabla w_{\varepsilon}\right|^{2} d x=\sum_{k} \int_{\Omega}\left|\nabla w_{\varepsilon}^{k}\right|^{2} d x
$$

Construction of Correctors

So, we need to calculate the energy $\int_{\Omega}\left|\nabla w_{\varepsilon}^{k}\right|^{2} d x$.
To make our problem more simple, we assume $\Gamma=\{x \cdot \nu=0\}$.
Let $g_{\varepsilon}(s)=\int_{B_{\varepsilon / 2}}\left|\nabla w_{\varepsilon}^{s}\right|^{2} d x$ where w_{ε}^{s} solves the local corrector equation defined as follow

Construction of Correctors

Define $\widetilde{w}_{\varepsilon}^{s}=w_{\varepsilon}^{s}\left(\frac{x}{a_{\varepsilon}}\right)$ and $G_{\varepsilon}(s)=\int_{B_{\varepsilon / a_{\varepsilon}}}\left|\nabla \widetilde{w}_{\varepsilon}^{s}\right|^{2} d x$. Then, we have

$$
g_{\varepsilon}(s)=a_{\varepsilon}^{n-2} G_{\varepsilon}(s)
$$

Construction of Correctors

Lemma
$G_{\varepsilon}(s)$ converges to $f(s)=\operatorname{cap}\left(T \cap \Gamma_{\nu}(s)\right)$ as $\varepsilon \rightarrow 0$ where $\Gamma_{\nu}(s)=\Gamma+(s) \nu$. Moreover, the convergence is uniform on s.

From now on, we assume $\nu_{n} \neq 0$.
We define

$$
\Gamma_{E}^{\prime}=\operatorname{proj}_{n-1}(E \cap \Gamma), \quad \mathcal{Z}_{\varepsilon}=\varepsilon^{-1} \Gamma_{E}^{\prime} \cap \mathbb{Z}^{n-1}
$$

Then Γ may be represented as

$$
\Gamma \cap E=\left\{\left(x^{\prime}, \alpha \cdot x^{\prime}\right) ; x^{\prime} \in \Gamma_{E}^{\prime}\right\}, \quad \alpha=\left(-\nu_{1} / \nu_{n}, \cdots,-\nu_{n-1} / \nu_{n}\right)
$$

Construction of Correctors

Note that $\sigma\left(\Gamma_{E}^{\prime}\right)=\nu_{n} \sigma(E \cap \Gamma)$ where σ is the surface measure induced by \mathbb{R}^{n}.

Construction of Correctors

Lemma

For any measurable subset E of \mathbb{R}^{n} and for a.e. $\nu \in S^{n-1}$,

$$
\int_{E}\left|\nabla w_{\varepsilon}\right|^{2} d x \rightarrow \sigma(\Gamma \cap E) \operatorname{cap}_{\nu}(T)
$$

if we choose $a_{\varepsilon}=\varepsilon^{\frac{n}{n-1}}$.

Construction of Correctors

Proof.

Note that $\left(\varepsilon k+T_{\varepsilon}\right) \cap \Gamma \neq \emptyset\left(k=\left(k^{\prime}, k_{n}\right)\right)$ is equivalent to the condition

$$
\varepsilon\left(\alpha \cdot k^{\prime}-k_{n}\right) \in\left(a_{\varepsilon} c, a_{\varepsilon} d\right)
$$

Construction of Correctors

proof continued.
Let $t=t\left(k^{\prime}\right)=\varepsilon\left(\alpha \cdot k^{\prime}-k_{n}\right)$. Then $t \in\left(-\frac{\varepsilon}{2}, \frac{\varepsilon}{2}\right)$.
And, since

$$
-\varepsilon k+\left(\left(\varepsilon k+T_{\varepsilon}\right) \cap \Gamma\right)=T_{\varepsilon} \cap\left(t\left(k^{\prime}\right) e_{n}+\Gamma\right),
$$

the shape of $\left(\left(\varepsilon k+T_{\varepsilon}\right) \cap \Gamma\right)$ is completely determined by $t=t\left(k^{\prime}\right)$. Hence we have

$$
\int_{B_{\varepsilon / 2}(\varepsilon k)}\left|\nabla w_{\varepsilon}^{k}\right|^{2} d x=\int_{B_{\varepsilon / 2}}\left|\nabla w_{\varepsilon}^{\left(t / a_{\varepsilon}\right) \nu_{n}}\right|^{2} d x=g_{\varepsilon}\left(\left(t / a_{\varepsilon}\right) \nu_{n}\right) .
$$

Construction of Correctors

proof continued.
For given any $M \in \mathbb{N}$, let $\delta=\frac{d-c}{M}$ and $I(i)$ defined as follow:

Construction of Correctors

proof continued.
Since $\cup_{i=1}^{M} I(i)=(c, d)$, we have

$$
\int_{E}\left|\nabla w_{\varepsilon}\right|^{2} d x=\sum_{i=1}^{M} \sum_{t\left(k^{\prime}\right) / a_{\varepsilon} \in I(i)} \int_{B_{\varepsilon / 2}(\varepsilon k)}\left|\nabla w_{\varepsilon}^{k}\right|^{2} d x
$$

Let $N_{\varepsilon}=\# \mathcal{Z}_{\varepsilon}$. And $A_{i}(\varepsilon)=\#\left\{t\left(k^{\prime}\right) / a_{\varepsilon} \in I(i): k^{\prime} \in \mathcal{Z}_{\varepsilon}\right\}$.
Note that $t\left(k^{\prime}\right) / \varepsilon$ are distributed in a unit interval.
We assume that those points distributed uniformly. In other words, we have

$$
A_{i}(\varepsilon)=(1+\rho(\varepsilon)) N(\varepsilon) \frac{a_{\varepsilon} \delta}{\varepsilon}, \quad \rho(0+)=0
$$

Construction of Correctors

proof continued.
From those, we have

$$
\begin{aligned}
\int_{E}\left|\nabla w_{\varepsilon}\right|^{2} d x & =\sum_{i=1}^{M} \sum_{t\left(k^{\prime}\right) / a_{\varepsilon} \in I(i)} \int_{B_{\varepsilon / 2}(\varepsilon k)}\left|\nabla w_{\varepsilon}^{k}\right|^{2} d x \\
& \leq \sum_{i=1}^{M} A_{i}(\varepsilon) \sup _{t / a_{\varepsilon} \in I(i)} g_{\varepsilon}\left(\left(t / a_{\varepsilon}\right) \nu_{n}\right) \\
& \leq(1+\rho(\varepsilon)) N(\varepsilon) \frac{a_{\varepsilon} \delta}{\varepsilon} \sum_{i=1}^{M} \sup _{t / a_{\varepsilon} \in I(i)} g_{\varepsilon}\left(\left(t / a_{\varepsilon}\right) \nu_{n}\right) \\
& \leq(1+\tilde{\rho}(\varepsilon)) \frac{\sigma\left(\Gamma_{E}^{\prime}\right)}{\varepsilon^{n-1}} \frac{a_{\varepsilon} \delta}{\varepsilon} \sum_{i=1}^{M} a_{\varepsilon}^{n-2} \sup _{t / a_{\varepsilon} \in I(i)} G_{\varepsilon}\left(\left(t / a_{\varepsilon}\right) \nu_{n}\right)
\end{aligned}
$$

where $\tilde{\rho}(0+)=0$.

Construction of Correctors

proof continued.
Taking limit superior on both sides we obtain, by the uniform convergence of G_{ε},

$$
\limsup _{\varepsilon \rightarrow 0} \int_{E}\left|\nabla w_{\varepsilon}\right|^{2} d x \leq \sigma\left(\Gamma_{E}^{\prime}\right) \frac{(d-c)}{M} \sum_{i=1}^{M} \sup _{\tilde{t} \in \tilde{I}(i)} f\left(\tilde{t} \nu_{n}\right) .
$$

Then, passing to the limit $M \rightarrow \infty$,

$$
\begin{aligned}
\limsup _{\varepsilon \rightarrow 0} \int_{E}\left|\nabla w_{\varepsilon}\right|^{2} d x & \leq \sigma\left(\Gamma_{E}^{\prime}\right) \int f\left(\tilde{t} \nu_{n}\right) d t \\
& =\frac{\sigma\left(\Gamma_{E}^{\prime}\right)}{\nu_{n}} \int f(s) d s=\sigma(\Gamma \cap E) \int f(s) d s .
\end{aligned}
$$

In a completely analogous way, we find

$$
\liminf _{\varepsilon \rightarrow 0} \int_{E}\left|\nabla w_{\varepsilon}\right|^{2} d x \geq \sigma(\Gamma \cap E) \int f(s) d s
$$

Proof of Proposition

Proposition (Existence of Corrector)

Let $\Gamma=\left\{x \in \mathbb{R}^{n} ;\left(x-x_{0}\right) \cdot \nu=0\right\}$ and let $a_{\varepsilon}=\varepsilon^{\frac{n}{n-1}}$. Then, for almost all $\nu \in S^{n-1}$, there exists a sequence of functions w_{ε} satisfying
(1) $w_{\varepsilon}=1$ on Γ_{ε}
(2) $w_{\varepsilon} \rightarrow 0$ weakly in $H_{0}^{1}(\Omega)$
(0) For any sequence $z_{\varepsilon} \in H_{0}^{1}(\Omega)$ such that $z_{\varepsilon}=0$ on $\Gamma_{\varepsilon},\left\|z_{\varepsilon}\right\|_{L^{\infty}(\Omega)} \leq C$ and $z_{\varepsilon} \rightarrow z$ weakly in $H_{0}^{1}(\Omega)$ there holds

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0}<\Delta w_{\varepsilon}, \rho z_{\varepsilon}>_{H^{-1}, H_{0}^{1}} \rightarrow \operatorname{cap}_{\nu}(T) \int_{\Gamma} \rho z d \sigma \tag{3.2}
\end{equation*}
$$

for all $\rho \in \mathcal{C}_{0}^{\infty}(\Omega)$.

Proof of Proposition

Lemma (Compact embedding with $o(\varepsilon)$ error)
Suppose $v_{\varepsilon} \rightarrow v$ weakly in $H_{0}^{1}(\Omega)$ and let $\Gamma=\Omega \cap\left\{x_{n}=0\right\}$. Then

$$
\frac{1}{\varepsilon} \int_{0}^{\varepsilon} \int_{\Gamma}\left(v_{\varepsilon}\left(x^{\prime}, x_{n}\right)-v\left(x^{\prime}, 0\right)\right) d x^{\prime} d x_{n} \rightarrow 0
$$

Next we note that there exist measures μ_{ε}^{k} and ν_{ε}^{k} such that

$$
\Delta w_{\varepsilon}^{k}=\mu_{\varepsilon}^{k}-\nu_{\varepsilon}^{k}, \quad \operatorname{supp} \mu_{\varepsilon}^{k} \subset \partial B_{\varepsilon}(\varepsilon k), \operatorname{supp} \nu_{\varepsilon}^{k} \subset \gamma_{\varepsilon}^{k} .
$$

We define

$$
\mu_{\varepsilon}=\sum_{k} \mu_{\varepsilon}^{k} .
$$

Proof of Proposition

Lemma

For a.e. $\nu \in S^{n-1}, \mu_{\varepsilon} \rightarrow \operatorname{cap}_{\nu}(T) \sigma$ in the weakly star sense of measures. That is,

$$
\left\langle\mu_{\varepsilon}, \rho\right\rangle \rightarrow \operatorname{cap}_{\nu}(T) \int_{\Gamma} \rho d \sigma, \text { for all } \rho \in C_{c}^{\infty}(\Omega)
$$

Proof.
Since $\left(1-w_{\varepsilon}\right)$ is zero on Γ_{ε} and 1 on $\cup_{k} \partial B_{\varepsilon}(\varepsilon k)$ we get

$$
\int_{\Omega} d \mu_{\varepsilon}=\int_{\Omega} \Delta w_{\varepsilon}\left(1-w_{\varepsilon}\right)=\int_{\Omega}\left|\nabla w_{\varepsilon}\right|^{2} d x \leq C
$$

Thus $\mu_{\varepsilon} \rightarrow \mu$ in the weak-* sense of measure for some finite measure μ. Clearly, $\operatorname{supp} \mu \subset \Gamma$ and,

$$
\int_{E} d \mu=\lim _{\varepsilon} \int_{E} d \mu_{\varepsilon}=\int_{E}\left|\nabla w_{\varepsilon}\right|^{2} d x \rightarrow \operatorname{cap}_{\nu}(T) \sigma(E \cap \Gamma)
$$

tells us the shape of μ.

Proof of Proposition

Let $v_{\varepsilon}\left(x^{\prime}, x_{n}\right)=\left(z_{\varepsilon} \rho\right)\left(x^{\prime}, \varepsilon x_{n}\right)$ and $v\left(x^{\prime}, x_{n}\right)=(z \rho)\left(x^{\prime}, 0\right)$. Then, from the compact embedding lemma, we have

$$
\begin{aligned}
& \frac{1}{\varepsilon} \int_{-\varepsilon / 2}^{\varepsilon / 2} \int_{\Pi}\left|\left(z_{\varepsilon} \rho\right)\left(x^{\prime}, x_{n}\right)-(z \rho)\left(x^{\prime}, 0\right)\right| d x^{\prime} d x_{n} \\
& =\int_{-1 / 2}^{1 / 2} \int_{\Pi}\left|\left(z_{\varepsilon} \rho\right)\left(x^{\prime}, \varepsilon x_{n}\right)-(z \rho)\left(x^{\prime}, 0\right)\right| d x^{\prime} d x_{n} \rightarrow 0
\end{aligned}
$$

and thus

$$
\left(z_{\varepsilon} \phi\right)\left(x^{\prime}, \varepsilon x_{n}\right)=: v_{\varepsilon}\left(x^{\prime}, x_{n}\right) \rightarrow v\left(x^{\prime}, x_{n}\right):=(z \rho)\left(x^{\prime}, 0\right)
$$

a.e. on $S:=\Gamma \times(-1 / 2,1 / 2)$.

Proof of Proposition

By Egoroff's theorem we can assert the existence of a set S_{δ} such that

$$
v_{\varepsilon} \rightarrow v \text { uniformly on } S_{\delta}, \quad\left|S \backslash S_{\delta}\right|<\delta,
$$

for any $\delta>0$.
Upon rescaling we find: There exists $\varepsilon_{0}>0$ such that

$$
\left|\left(z_{\varepsilon} \rho\right)\left(x^{\prime}, x_{n}\right)-(z \rho)\left(x^{\prime}, 0\right)\right|<\delta \text { on } S_{\delta}^{\varepsilon}, \quad\left|S^{\varepsilon} \backslash S_{\delta}^{\varepsilon}\right|<\varepsilon \delta, \quad \text { for all } \varepsilon<\varepsilon_{0},
$$

where, for any set $E \in \mathbb{R}^{n}, E^{\varepsilon}=\left\{\left(x^{\prime}, \varepsilon x_{n}\right):\left(x^{\prime}, x_{n}\right) \in E\right\}$.
Note that since $\Delta w_{\varepsilon}=\mu_{\varepsilon}-\nu_{\varepsilon}$ with $\operatorname{supp} \nu_{\varepsilon} \subset \Gamma_{\varepsilon}$ and $z_{\varepsilon}=0$ on Γ_{ε},

$$
\int_{\Omega} \Delta w_{\varepsilon} \rho z_{\varepsilon} d x=\int_{\Omega} \rho z_{\varepsilon} d \mu_{\varepsilon}
$$

This allows us to compute

$$
\left|\int_{\Omega}\left(z_{\varepsilon} \rho-z \rho\right) d \mu_{\varepsilon}\right| \leq \int_{S_{\delta}^{\varepsilon}}\left|z_{\varepsilon} \rho-z \rho\right| d \mu_{\varepsilon}+2\|z \rho\|_{L^{\infty}} \int_{S^{\varepsilon} \backslash S_{\delta}^{\varepsilon}} d \mu_{\varepsilon}
$$

Proof of Proposition

The first term converges to 0 because $z_{\varepsilon} \phi$ converges to $z \phi$ uniformly on S_{δ}^{ε} and the last term is smaller than $C \delta$ for arbitrary $\delta>0$. So, $\left|\int_{\Omega}\left(z_{\varepsilon} \rho-z \rho\right) d \mu_{\varepsilon}\right|$ should be converge to 0 .
Finally, we are done if we prove

$$
\lim _{\varepsilon \rightarrow 0} \int_{\Omega} z \rho\left(x^{\prime}, 0\right) d \mu_{\varepsilon}=\operatorname{cap}_{\nu}(T) \int_{\Gamma} z \rho d \sigma .
$$

Uniform Distribution for the 1-dimensional sequence

Definition (Uniform distribution mod 1)
(1) Let $\left\{x_{j}\right\}_{j=1}^{\infty}$ be given sequence of real numbers. For a positive integer N and a subset E of $[0,1]$, let the counting function $A\left(E ;\left\{x_{j}\right\} ; N\right)$ be defined as the numbers of terms $x_{j}, 1 \leq j \leq N$, for which $x_{j} \in E(\bmod 1)$.
(2) The sequence of real numbers $\left\{x_{j}\right\}$ is said to be uniformly distributed modulo 1 if for every pair a, b of real numbers with $0 \leq a<b \leq 1$ we have

$$
\lim _{N \rightarrow \infty} \frac{A\left([a, b) ;\left\{x_{j}\right\} ; N\right)}{N}=b-a .
$$

Uniform Distribution for the 1-dimensional sequence

Lemma (Weyl's criterion)
A sequence $\left\{x_{j}\right\}_{j=1}^{\infty}$ is uniformly distributed mod 1 if and only if

$$
\frac{1}{N} \sum_{j=1}^{N} e^{2 \pi i l x_{j}} \rightarrow 0, \text { as } N \rightarrow \infty
$$

for any nonzero $l \in \mathbb{Z}$.
From the Weyl's criterion, we can easily check that the sequence $\{k \alpha\}_{k \in \mathbb{N}}$ is uniformly distributed modulo 1 sense if α is a irrational number. In other words, the sequence $\{k \alpha\}$ satisfies the following:

$$
A\left([a, b) ;\left\{x_{j}\right\}, N\right)=(b-a) N\left(1+\rho\left(N^{-1}\right)\right),
$$

Uniform Distribution for the 1-dimensional sequence

But, we cannot assert that above is true when the length of interval is shrinking as $j \rightarrow \infty$. This is a much stronger result that relies on deeper arithmetic properties of α.

Definition

Let $\left\{x_{j}\right\}_{j=1}^{\infty}$ be a sequence of real numbers. The discrepancy of its N first elements is the number

$$
D_{N}\left(\left\{x_{j}\right\}_{j=1}^{N}\right)=\sup _{0 \leq a<b \leq 1}\left|\frac{A\left([a, b) ;\left\{x_{j}\right\}_{j=1}^{\infty}, N\right)}{N}-(b-a)\right|
$$

If $x_{j}=j \alpha$, we simply write $D_{N}(\alpha)$.

Uniform Distribution for the 1-dimensional sequence

Theorem (Kesten,1964)

$$
\frac{N D_{N}(\alpha)}{\log N \log (\log N)} \rightarrow \frac{2}{\pi^{2}}
$$

in measure w.r.t. α as $N \rightarrow \infty$. In particular, this result is true for a.e. α in a bounded set.

Corollary
For a.e. $\alpha \in \mathbb{R}$ holds

$$
D_{N}(\alpha)=O\left(\frac{\log ^{2+\delta} N}{N}\right)
$$

for any $\delta>0$.
Definition
If $\alpha \in \mathbb{R}$ satisfies the condition above, then we write

$$
\alpha \in \mathcal{A} .
$$

Application to the Sequence $\left\{k^{\prime} \alpha\right\}$

Application to the Sequence $\left\{k^{\prime} \alpha\right\}$

Lemma

Let $\alpha=\left(\alpha_{1}, \cdots, \alpha_{m}\right)$ be any vector in \mathbb{R}^{m}. Suppose that $E \subset \mathbb{R}^{m}$ is a (regular) subset with positive measure. Suppose also that $\alpha_{i} \in \mathcal{A}$, for at least one $i \in\{1, \cdots, m\}$.
Let

$$
\begin{aligned}
& N(\varepsilon)=\#\left(E \cap \mathbb{Z}^{m}\right) \\
& A\left(\varepsilon^{p}, c\right):=\#\left\{k^{\prime} \in E \cap \mathbb{Z}^{m}: t\left(k^{\prime}\right) / \mathbb{Z}=\in\left(c, c+\varepsilon^{p}\right) / \mathbb{Z}\right\}
\end{aligned}
$$

Then for any $0<p<1$,

$$
A\left(\varepsilon^{p}, c\right)=(1+\rho(\varepsilon)) N(\varepsilon) \varepsilon^{p}, \text { for some } \rho \text { such that } \rho\left(0^{+}\right)=0 .
$$

Application to the Sequence $\left\{k^{\prime} \alpha\right\}$

Proof.
Suppose first that E is a cube, $E=x+(a, b)^{m}$. Without loss of generality, we may assume $\alpha_{m} \in \mathcal{A}$.
Let

$$
S_{\varepsilon}^{\prime}:=\left\{k^{\prime} \in \mathbb{Z}^{m-1}:\left(k^{\prime}, k_{m}\right) \in \varepsilon^{-1} E, \text { for some } k_{m} \in \mathbb{Z}\right\} .
$$

If $k^{\prime} \in S_{\varepsilon}^{\prime}$, there exists integers m_{ε} and M_{ε} such that

$$
\left(k^{\prime}, k_{m}\right) \in\left(\varepsilon^{-1} E\right) \cap \mathbb{Z}^{m}, \quad \text { for } m_{\varepsilon} \leq k_{m} \leq M_{\varepsilon} .
$$

Hence we have

$$
N(\varepsilon)=\left(\# S_{\varepsilon}^{\prime}\right) H_{\varepsilon}, \quad H_{\varepsilon}=M_{\varepsilon}-m_{\varepsilon}
$$

Application to the Sequence $\left\{k^{\prime} \alpha\right\}$

proof continued.

Application to the Sequence $\left\{k^{\prime} \alpha\right\}$

proof continued.
Let

$$
A_{k^{\prime}}\left(\varepsilon^{p}, c\right)=\#\left\{k_{m}: \alpha^{\prime} \cdot k^{\prime}+\alpha^{m} k_{m} \in\left(c, c+\varepsilon^{p}\right) / \mathbb{Z}, m_{\varepsilon} \leq k_{m} \leq M_{\varepsilon}\right\}
$$

Then,

$$
A\left(\varepsilon^{p}, c\right)=\sum_{k^{\prime} \in S_{\varepsilon}^{\prime}} A_{k^{\prime}}\left(\varepsilon^{p}, c\right) .
$$

From the definition of $A\left(\varepsilon^{p}, t\right)$, we conclude that

$$
\begin{aligned}
A_{k^{\prime}}\left(\varepsilon^{p}, c\right) & =\#\left\{k_{m}: \alpha^{\prime} \cdot k^{\prime}+\alpha_{m} k_{m} \in\left(c, c+\varepsilon^{p}\right) / \mathbb{Z}, m_{\varepsilon} \leq k_{m} \leq M_{\varepsilon}\right\} \\
& =\#\left\{k_{m}: k_{m} \alpha_{m} \in\left(\tilde{c}, \tilde{c}+\varepsilon^{p}\right) / \mathbb{Z}, 1 \leq k_{m} \leq H_{\varepsilon}+1\right\}
\end{aligned}
$$

for some \tilde{c}.

Application to the Sequence $\left\{k^{\prime} \alpha\right\}$

proof continued.
By applying Kesten's theorem to the set $\left\{k_{m}: k_{m} \alpha_{m} \in\left[\tilde{c}, \tilde{c}+\varepsilon^{p}\right] / \mathbb{Z}, 1 \leq k_{m} \leq H_{\varepsilon}+1\right\}$, we have

$$
\begin{aligned}
& \left|\frac{\left.A_{k^{\prime}}\left(\varepsilon^{p}, c\right)\right)}{H_{\varepsilon}}-\left|\left(\tilde{c}, \tilde{c}+\varepsilon^{p}\right)\right|\right| \\
& =\left|\frac{A_{k^{\prime}}\left(\varepsilon^{p}, c\right)}{H_{\varepsilon}}-\varepsilon^{p}\right| \leq D_{H_{\varepsilon}}\left(\alpha_{m}\right)=o\left(H_{\varepsilon}^{-p}\right), \quad 0<p<1
\end{aligned}
$$

And hence

$$
\begin{aligned}
\left|\frac{A\left(\varepsilon^{p}, c\right)}{N(\varepsilon)}-\varepsilon^{p}\right| & \leq \frac{H_{\varepsilon}}{N_{\varepsilon}} \sum_{k^{\prime} \in S_{\varepsilon}^{\prime}}\left|\frac{A_{k^{\prime}}\left(\varepsilon^{p}, c\right)}{H_{\varepsilon}}-\varepsilon^{p}\right| \\
& \leq \frac{H_{\varepsilon}}{N_{\varepsilon}} \sum_{k^{\prime} \in S_{\varepsilon}^{\prime}} D_{H_{\varepsilon}}\left(\alpha^{m}\right)=D_{H_{\varepsilon}}\left(\alpha_{m}\right)=o\left(\varepsilon^{p}\right), \quad \text { as } \varepsilon \rightarrow 0
\end{aligned}
$$

Application to the Sequence $\left\{k^{\prime} \alpha\right\}$

proof continued.
It can be easily extended when E is a finite union of cubes.
Finally, when E is just measurable, approximate E by a finite union of cubes U. Then, by applying the previous result, we get the conclusion.

Thank You!

