Highly oscillating thin obstacles

Minha Yoo

Department of Mathematical Sciences Seoul National University, Korea

December 1, 2012

(joint work with Ki-Ahm Lee and Martin Strömqvist)

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 で
1/47

Obstacle Problems

Let Ω be a bounded, open and connected domain in \mathbb{R}^n .

Definition

For any given function $\psi \in C^2(\Omega)$ (or $\psi \in H^1(\Omega)$), known as the obstacle, and $g \in H^1(\Omega)$ satisfying the compatibility condition $\psi \leq g$ on $\partial\Omega$, we say u is the solution of the obstacle problem if u is the minimizer of the functional

$$J(v) = \int_{\Omega} |\nabla v|^2 + 2fv dx$$

where v is in $K = \{ v \in H^1(\Omega) : v \ge \psi \text{ in } \Omega, \quad v - g \in H^1_0(\Omega) \}.$

Obstacle Problems

If the obstacle is only defined on (n-1)-dimensional manifold Γ then we call such problems Signorini problem or Thin obstacle problem.

Definition

For any given function $\psi \in C^2(\Omega)$ (or $\psi \in H^1(\Omega) \cap L^{\infty}(\Omega)$), $g \in H^1(\Omega)$ satisfying the compatibility condition $\psi \leq g$ on $\partial\Omega$, we say u is the solution of the obstacle problem if u is the minimize of the functional

$$J(v) = \int_{\Omega} |\nabla v|^2 + 2fv dx$$

where v is in $K = \{v \in H^1(\Omega) : v \ge \psi \text{ on } (\Gamma \cap \Omega), \quad v - g \in H^1_0(\Omega) \}.$

In this talk, we assume that $n \geq 3$ and g = 0.

Periodical Background

For a given open subset T of $B_{\frac{1}{2}}$, we define T_{ε}^k by $\varepsilon k + a_{\varepsilon}T$ and $\mathcal{T}_{\varepsilon}$ by $\cup T_{\varepsilon}^k$ where $k \in \mathbb{Z}^n$ and $a_{\varepsilon} < \varepsilon$.

Periodical Background

For any subset D of \mathbb{R}^n and for any $\psi \in H^1(\mathbb{R}^n)$, we define $D_{\varepsilon} = D \cap T_{\varepsilon}$ and

5/47

Highly Oscillating Obstacle Problem

Let u_{ε} be the solution of the obstacle problem with obstacle ψ_{ε} . More precisely, u_{ε} is the minimizer of the functional

$$J(v) = \int_{\Omega} |\nabla v|^2 + 2fv dx \qquad (M_{\varepsilon})$$

 $\text{for } v \in K_{\varepsilon} = \{ v \in H^1(\Omega); v \geq \psi_{\varepsilon} \text{ in } \Omega, \quad v - g \in H^1_0(\Omega) \}.$

Then our main problem is to determine the limit u of the solution u_{ε} in terms of a limit equation it solves.

Definition

- **9** If $D = \Omega$, then we call (M_{ε}) a highly oscillating obstacle problem.
- **②** If $D = \Gamma$, (n 1)-dimensional manifold, then we call (M_{ε}) a highly oscillating thin obstacle problem.

Actually, the limit behavior of u_{ε} is related with the decay rate a_{ε} of holes.

Averaged Capacity

Definition

Let A be any compact subset of $\mathbb{R}^n.$ Then, for any $n\geq 3,$ the capacity of A is defined as follow

$$cap(A) = \inf\left\{\int_{\mathbb{R}^n} |\nabla \rho|^2 dx : \rho \in \mathcal{C}^\infty_0(\mathbb{R}^n), \rho \geq 1 \text{ on } A\right\}$$

Now we define the new concept of the capacity to describe the equation that satisfies the limit u of $u_{\varepsilon}.$

Let Γ be a hyper plane in \mathbb{R}^n with normal $\nu \in S^{n-1}$. and let

$$\Gamma(s) = \Gamma_{\nu}(s) = \Gamma + s\nu.$$

be the family of hyper-planes.

Introduction

Averaged Capacity

< □ > < 部 > < 書 > < 書 > 差 → ○ < で 8/47

Averaged Capacity

Definition (Averaged capacity) If $T \in \mathbb{R}^n$ and $\Gamma = \{(x - x_0) \cdot \nu = 0\}$,

$$f(s) = cap(T \cap \Gamma + s\nu)$$

is integrable, then we set

$$cap_{\nu}(T) = \int_{-\infty}^{\infty} f(s)ds$$

and call this quantity the averaged capacity of T with respect to ν .

Introduction

Main Theroem

Theorem

Let $n \geq 3$ and u_{ε} be the solution of (M_{ε}) when $D = \Gamma = \{x \in \mathbb{R}^n : (x - x_0) \cdot \nu = 0\}$. We set we set $a_{\varepsilon} = \varepsilon^{\frac{n}{n-1}}$. Then $u_{\varepsilon} \to u$ weakly in $H_0^1(\Omega)$ and u is the unique minimizer of

$$J_{\nu}(v) = \int_{\Omega} |\nabla v|^2 + 2fv dx + cap_{\nu}(T) \int_{\Gamma} \left((\psi - v)^+ \right)^2 d\sigma, \quad v \ge 0$$
 (M)

for a.e. $\nu \in S^{n-1}$. In particular, if f is non-negative, then u is the solution of

$$-\triangle u + cap_{\nu}(T)(\psi - u)^+ d\sigma + f = 0.$$

Introduction

Related Works

• In 1997, Cioranescu and Murat proved that if $D = \Omega$ and $a_{\varepsilon} = \varepsilon^{\frac{n}{n-2}}$, then the solution u_{ε} of (M_{ε}) converges to u and u satisfies the following equation:

$$-\bigtriangleup u + \mu u = f$$
 in Ω

for some constant μ .

(a) They also proved that if $D = \{x_n = 0\}$ and $a_{\varepsilon} = \varepsilon^{\frac{n-1}{n-2}}$, then the limit u satisfies

$$-\triangle u + \mu u d\delta_{\{x_n=0\}} = f \text{ in } \Omega.$$

In 2008, Caffarelli and Lee proved the similar result for the fully nonlinear operator F when D = Ω. The decay rate a_ε is determined by the constant λ that makes

$$V(x) = |x|^{-\lambda} \Phi(\frac{x}{|x|})$$

a solution of $F(D^2V) = 0$ except the singular point.

In 2009, Caffarelli and Mellet proved the similar result when T = T(k, ω) is distributed randomly. If cap(T(k, ω)) is stationary ergodic, D = Ω, and a_ε = ε^{n/n-2} then we have similar result to (1) and the limit doesn't depend on ω.

Corrector

Proposition (Existence of Corrector)

Let $\Gamma = \{x \in \mathbb{R}^n; (x - x_0) \cdot \nu = 0\}$ and let $a_{\varepsilon} = \varepsilon^{\frac{n}{n-1}}$. Then, for almost all $\nu \in S^{n-1}$, there exists a sequence of functions w_{ε} satisfying

- $w_{\varepsilon} = 1$ on Γ_{ε}
- 2 $w_{\varepsilon} \to 0$ weakly in $H_0^1(\Omega)$
- For any sequence $z_{\varepsilon} \in H_0^1(\Omega)$ such that $z_{\varepsilon} = 0$ on Γ_{ε} , $||z_{\varepsilon}||_{L^{\infty}(\Omega)} \leq C$ and $z_{\varepsilon} \to z$ weakly in $H_0^1(\Omega)$ there holds

$$\lim_{\epsilon \to 0} < \Delta w_{\varepsilon}, \rho z_{\varepsilon} >_{H^{-1}, H^{1}_{0}} = cap_{\nu}(T) \int_{\Gamma} \rho z d\sigma$$
(2.1)

for all $\rho \in \mathcal{C}_0^{\infty}(\Omega)$.

Lemma (Lower semicontinuity of the Energy)

Let $z_{\varepsilon} \in H_0^1$ be a sequence which is bounded uniformly on ε , $z_{\varepsilon} \to z$ weakly in H_0^1 and $z_{\varepsilon} = 0$ on Γ_{ε} . Then, we have

$$\liminf \int_{\Omega} |\nabla z_{\varepsilon}|^2 dx \ge \int_{\Omega} |\nabla z|^2 dx + cap_{\nu}(T) \int_{\Gamma} z^2 d\sigma.$$

The last term comes from the choice of the test function z_{ε} .

Sketch of proof.

From the proposition,

$$\int_{\Omega} |\nabla w_{\varepsilon}|^2 \rho^2 \to cap_{\nu}(T) \int_{\Gamma} \rho^2 d\sigma, \quad \rho \in \mathcal{C}^{\infty}_0(\Omega)$$

Apply this to $0 \leq \int_{\Omega} |\nabla(z_{\varepsilon} - w_{\varepsilon}\rho)|^2 dx$ and then apply $\rho = z_{\varepsilon}$. Then, we get the conclusion.

Lemma

Let u_{ε} be solution of (M_{ε}) . Then we have

$$\liminf \int_{\Omega} |\nabla u_{\varepsilon}|^2 dx \ge \int_{\Omega} |\nabla u|^2 dx + cap_{\nu}(T) \int_{\Gamma} \left((\psi - u)^+ \right)^2 d\sigma.$$

Proof.

We have the identity $u_{\varepsilon} = -(\psi - u_{\varepsilon})^+ + (\psi - u_{\varepsilon})^- + \psi$. Since $u_{\varepsilon} \ge \psi$ on Γ_{ε} , $(\psi - u_{\varepsilon})^+ = 0$ on Γ_{ε} , we have

$$\liminf \int_{\Omega} |\nabla(\psi - u_{\varepsilon})^{+}|^{2} dx \geq \int_{\Omega} |\nabla(\psi - u)^{+}|^{2} dx + cap_{\nu}(T) \int_{\Gamma} \left((\psi - u)^{+} \right)^{2} d\sigma.$$

Then, the lemma follows from above and the general weak lower semi-continuity.

Lemma

Let u_{ε} be solution of (M_{ε}) . Then we have

$$\limsup \int_{\Omega} |\nabla u_{\varepsilon}|^2 dx \leq \int_{\Omega} |\nabla v|^2 dx + cap_{\nu}(T) \int_{\Gamma} v^2 d\sigma.$$

for all $v \in \mathcal{C}^{\infty}_0(\Omega)$ and $v \ge 0$.

Sketch of Proof.

- For any given v, let $v_{\varepsilon} = (w_{\varepsilon} 1)(\psi v)^{+} + (\psi v)^{-} + \psi$. Then $v_{\varepsilon} \in K_{\varepsilon} = \{v \in H_0^1(\Omega); v \ge \psi_{\varepsilon}\}.$
- Since w_{ε} converges to 0 weakly in $H_0^1(\Omega)$, $v_{\varepsilon} \to v$ weakly in $H_0^1(\Omega)$.
- Solution From the minimality of u_{ε} , $J(u_{\varepsilon}) \leq J(v_{\varepsilon})$.
- Finally, by using the proposition, we have

 $\limsup J(v_{\varepsilon}) \le J_{\nu}(v).$

Proof of Main Theorem.

- Since ψ⁺ is in the set K_ε for all ε, J(u_ε) ≤ J(ψ⁺) and hence ||u_ε||_{H¹} is bounded uniformly on ε. From this, we can extract a subsequence u_{ε_j} which converges to u weakly in H¹.
- Prom previous two lemmas,

$$\begin{split} &\int_{\Omega} \frac{1}{2} |\nabla u|^2 + f u dx + cap_{\nu}(T) \frac{1}{2} \int_{\Gamma} ((\psi - u)^+)^2 d\sigma \\ &\leq \liminf_{\varepsilon \to 0} \int_{\Omega} \frac{1}{2} |\nabla u_{\varepsilon}|^2 + f u_{\varepsilon} dx \leq \limsup_{\varepsilon \to 0} \int_{\Omega} \frac{1}{2} |\nabla u_{\varepsilon}|^2 + f u_{\varepsilon} dx \\ &\leq \int_{\Omega} \frac{1}{2} |\nabla v|^2 + f v dx + cap_{\nu}(T) \int_{\Gamma} ((\psi - v)^+)^2 d\sigma, \end{split}$$

for all $v \in \mathcal{C}_0^{\infty}(\Omega)$ with $v \ge 0$.

We are going to construct w_{ε} in proposition by defining w_{ε} locally near the intersection between Γ and T_{ε}^k .

Let $\gamma_{\varepsilon}^k = \Gamma \cap T_{\varepsilon}^k$ and let w_{ε}^k be the restriction of w_{ε} to $Q_{\varepsilon}(\varepsilon k)$ given by

$$\begin{cases} w_{\varepsilon}^{k} = 1 & \text{ on } \gamma_{\varepsilon}^{k} \\ \Delta w_{\varepsilon}^{k} = 0 & \text{ in } B_{\varepsilon/2} \setminus \gamma_{\varepsilon}^{k} \\ w_{\varepsilon}^{k} = 0 & \text{ in } Q_{\varepsilon} \setminus B_{\varepsilon/2}, \end{cases}$$

・ロン ・四 と ・ 日 と ・ 日 ・

If we define $w_{arepsilon} = \sum_k w_{arepsilon}^k$, the energy of $w_{arepsilon}$ is given by

$$\int_{\Omega} |\nabla w_{\varepsilon}|^2 dx = \sum_k \int_{\Omega} |\nabla w_{\varepsilon}^k|^2 dx.$$

18 / 47

So, we need to calculate the energy $\int_{\Omega} |\nabla w_{\varepsilon}^k|^2 dx$. To make our problem more simple, we assume $\Gamma = \{x \cdot \nu = 0\}$. Let $g_{\varepsilon}(s) = \int_{B_{\varepsilon/2}} |\nabla w_{\varepsilon}^s|^2 dx$ where w_{ε}^s solves the local corrector equation defined as follow

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Define $\widetilde{w}^s_\varepsilon=w^s_\varepsilon(\frac{x}{a_\varepsilon})$ and $G_\varepsilon(s)=\int_{B_{\varepsilon/a_\varepsilon}}|\nabla\widetilde{w}^s_\varepsilon|^2dx.$ Then, we have

$$g_{\varepsilon}(s) = a_{\varepsilon}^{n-2} G_{\varepsilon}(s)$$

Lemma

 $G_{\varepsilon}(s)$ converges to $f(s) = cap (T \cap \Gamma_{\nu}(s))$ as $\varepsilon \to 0$ where $\Gamma_{\nu}(s) = \Gamma + (s)\nu$. Moreover, the convergence is uniform on s.

From now on, we assume $\nu_n \neq 0$. We define

$$\Gamma'_E = \operatorname{proj}_{n-1}(E \cap \Gamma), \quad \mathcal{Z}_{\varepsilon} = \varepsilon^{-1} \Gamma'_E \cap \mathbb{Z}^{n-1}.$$

Then Γ may be represented as

$$\Gamma \cap E = \{ (x', \alpha \cdot x'); x' \in \Gamma'_E \}, \quad \alpha = (-\nu_1/\nu_n, \cdots, -\nu_{n-1}/\nu_n)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Note that $\sigma(\Gamma'_E) = \nu_n \sigma(E \cap \Gamma)$ where σ is the surface measure induced by \mathbb{R}^n .

Lemma

For any measurable subset E of \mathbb{R}^n and for a.e. $\nu \in S^{n-1}$,

$$\int_E |\nabla w_\varepsilon|^2 dx \to \sigma(\Gamma \cap E) \operatorname{cap}_\nu(T).$$

if we choose $a_{\varepsilon} = \varepsilon^{\frac{n}{n-1}}$.

Proof.

Note that $(\varepsilon k + T_{\varepsilon}) \cap \Gamma \neq \emptyset$ $(k = (k', k_n))$ is equivalent to the condition

 $\varepsilon \left(\alpha \cdot k' - k_n \right) \in (a_{\varepsilon}c, a_{\varepsilon}d).$

24 / 47

proof continued.

Let
$$t = t(k') = \varepsilon (\alpha \cdot k' - k_n)$$
. Then $t \in \left(-\frac{\varepsilon}{2}, \frac{\varepsilon}{2}\right)$.
And, since

$$-\varepsilon k + \left((\varepsilon k + T_{\varepsilon}) \cap \Gamma \right) = T_{\varepsilon} \cap \left(t(k')e_n + \Gamma \right),$$

the shape of $((\varepsilon k+T_\varepsilon)\cap\Gamma)$ is completely determined by t=t(k'). Hence we have

$$\int_{B_{\varepsilon/2}(\varepsilon k)} |\nabla w_{\varepsilon}^k|^2 dx = \int_{B_{\varepsilon/2}} |\nabla w_{\varepsilon}^{(t/a_{\varepsilon})\nu_n}|^2 dx = g_{\varepsilon}((t/a_{\varepsilon})\nu_n).$$

イロン イロン イヨン イヨン 三日

25 / 47

proof continued.

For given any $M\in\mathbb{N},$ let $\delta=\frac{d-c}{M}$ and I(i) defined as follow:

proof continued.

Since $\cup_{i=1}^{M} I(i) = (c, d)$, we have

$$\int_{E} |\nabla w_{\varepsilon}|^{2} dx = \sum_{i=1}^{M} \sum_{t(k')/a_{\varepsilon} \in I(i)} \int_{B_{\varepsilon/2}(\varepsilon k)} |\nabla w_{\varepsilon}^{k}|^{2} dx$$

Let $N_{\varepsilon} = \# Z_{\varepsilon}$. And $A_i(\varepsilon) = \# \{ t(k')/a_{\varepsilon} \in I(i) : k' \in Z_{\varepsilon} \}$. Note that $t(k')/\varepsilon$ are distributed in a unit interval. We assume that those points distributed uniformly. In other words, we have

$$A_i(\varepsilon) = (1 + \rho(\varepsilon))N(\varepsilon)\frac{a_{\varepsilon}\delta}{\varepsilon}, \quad \rho(0+) = 0.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

proof continued.

From those, we have

$$\begin{split} \int_{E} |\nabla w_{\varepsilon}|^{2} dx &= \sum_{i=1}^{M} \sum_{t(k')/a_{\varepsilon} \in I(i)} \int_{B_{\varepsilon/2}(\varepsilon k)} |\nabla w_{\varepsilon}^{k}|^{2} dx \\ &\leq \sum_{i=1}^{M} A_{i}(\varepsilon) \sup_{t/a_{\varepsilon} \in I(i)} g_{\varepsilon}((t/a_{\varepsilon})\nu_{n}) \\ &\leq (1+\rho(\varepsilon))N(\varepsilon) \frac{a_{\varepsilon}\delta}{\varepsilon} \sum_{i=1}^{M} \sup_{t/a_{\varepsilon} \in I(i)} g_{\varepsilon}((t/a_{\varepsilon})\nu_{n}) \\ &\leq (1+\tilde{\rho}(\varepsilon)) \frac{\sigma(\Gamma'_{E})}{\varepsilon^{n-1}} \frac{a_{\varepsilon}\delta}{\varepsilon} \sum_{i=1}^{M} a_{\varepsilon}^{n-2} \sup_{t/a_{\varepsilon} \in I(i)} G_{\varepsilon}((t/a_{\varepsilon})\nu_{n}), \end{split}$$

where $\tilde{\rho}(0+) = 0$.

・ロ・・ 日・・ ヨ・・ ヨ・ クへぐ

28 / 47

proof continued.

Taking limit superior on both sides we obtain, by the uniform convergence of $G_{\varepsilon},$

$$\limsup_{\varepsilon \to 0} \int_E |\nabla w_\varepsilon|^2 dx \le \sigma(\Gamma'_E) \frac{(d-c)}{M} \sum_{i=1}^M \sup_{\tilde{t} \in \tilde{I}(i)} f(\tilde{t}\nu_n).$$

Then, passing to the limit $M \to \infty$,

$$\limsup_{\varepsilon \to 0} \int_{E} |\nabla w_{\varepsilon}|^{2} dx \leq \sigma(\Gamma'_{E}) \int f(\tilde{t}\nu_{n}) dt$$
$$= \frac{\sigma(\Gamma'_{E})}{\nu_{n}} \int f(s) ds = \sigma(\Gamma \cap E) \int f(s) ds.$$

In a completely analogous way, we find

$$\liminf_{\varepsilon \to 0} \int_E |\nabla w_\varepsilon|^2 dx \ge \sigma(\Gamma \cap E) \int f(s) ds.$$

Proposition (Existence of Corrector)

Let $\Gamma = \{x \in \mathbb{R}^n; (x - x_0) \cdot \nu = 0\}$ and let $a_{\varepsilon} = \varepsilon^{\frac{n}{n-1}}$. Then, for almost all $\nu \in S^{n-1}$, there exists a sequence of functions w_{ε} satisfying

- $w_{\varepsilon} = 1 \text{ on } \Gamma_{\varepsilon}$
- 2 $w_{\varepsilon} \to 0$ weakly in $H_0^1(\Omega)$
- For any sequence $z_{\varepsilon} \in H_0^1(\Omega)$ such that $z_{\varepsilon} = 0$ on Γ_{ε} , $||z_{\varepsilon}||_{L^{\infty}(\Omega)} \leq C$ and $z_{\varepsilon} \to z$ weakly in $H_0^1(\Omega)$ there holds

$$\lim_{\epsilon \to 0} < \Delta w_{\varepsilon}, \rho z_{\varepsilon} >_{H^{-1}, H^1_0} \to cap_{\nu}(T) \int_{\Gamma} \rho z d\sigma$$
(3.2)

(日) (部) (注) (注) (言)

30/47

for all $\rho \in \mathcal{C}_0^{\infty}(\Omega)$.

Lemma (Compact embedding with $o(\varepsilon)$ error)

Suppose $v_{\varepsilon} \to v$ weakly in $H_0^1(\Omega)$ and let $\Gamma = \Omega \cap \{x_n = 0\}$. Then

$$\frac{1}{\varepsilon}\int_0^\varepsilon\int_\Gamma(v_\varepsilon(x',x_n)-v(x',0))dx'dx_n\to 0.$$

Next we note that there exist measures μ_{ε}^k and ν_{ε}^k such that

$$\Delta w_{\varepsilon}^{k} = \mu_{\varepsilon}^{k} - \nu_{\varepsilon}^{k}, \quad \operatorname{supp} \mu_{\varepsilon}^{k} \subset \partial B_{\varepsilon}(\varepsilon k), \, \operatorname{supp} \nu_{\varepsilon}^{k} \subset \gamma_{\varepsilon}^{k}.$$

We define

$$\mu_{\varepsilon} = \sum_{k} \mu_{\varepsilon}^{k}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Lemma

For a.e. $\nu \in S^{n-1}$, $\mu_{\varepsilon} \to cap_{\nu}(T)\sigma$ in the weakly star sense of measures. That is,

$$\langle \mu_{\varepsilon}, \rho \rangle \to cap_{\nu}(T) \int_{\Gamma} \rho d\sigma, \text{ for all } \rho \in C^{\infty}_{c}(\Omega).$$

Proof.

Since $(1-w_{\varepsilon})$ is zero on Γ_{ε} and 1 on $\cup_k \partial B_{\varepsilon}(\varepsilon k)$ we get

$$\int_{\Omega} d\mu_{\varepsilon} = \int_{\Omega} \Delta w_{\varepsilon} (1 - w_{\varepsilon}) = \int_{\Omega} |\nabla w_{\varepsilon}|^2 dx \le C.$$

Thus $\mu_{\varepsilon} \to \mu$ in the weak-* sense of measure for some finite measure μ . Clearly, $\operatorname{supp} \mu \subset \Gamma$ and,

$$\int_E d\mu = \lim_{\varepsilon} \int_E d\mu_{\varepsilon} = \int_E |\nabla w_{\varepsilon}|^2 dx \to cap_{\nu}(T)\sigma(E \cap \Gamma)$$

tells us the shape of μ .

Let $v_{\varepsilon}(x', x_n) = (z_{\varepsilon}\rho)(x', \varepsilon x_n)$ and $v(x', x_n) = (z\rho)(x', 0)$. Then, from the compact embedding lemma, we have

$$\begin{split} &\frac{1}{\varepsilon} \int_{-\varepsilon/2}^{\varepsilon/2} \int_{\Pi} |(z_{\varepsilon}\rho)(x',x_n) - (z\rho)(x',0)| dx' dx_n \\ &= \int_{-1/2}^{1/2} \int_{\Pi} |(z_{\varepsilon}\rho)(x',\varepsilon x_n) - (z\rho)(x',0)| dx' dx_n \to 0 \end{split}$$

and thus

$$(z_{\varepsilon}\phi)(x',\varepsilon x_n) := v_{\varepsilon}(x',x_n) \to v(x',x_n) := (z\rho)(x',0),$$

◆□ > ◆□ > ◆臣 > ◆臣 > ● ○ ● ● ●

33 / 47

a.e. on $S:=\Gamma\times(-1/2,1/2).$

By Egoroff's theorem we can assert the existence of a set S_{δ} such that

$$v_{\varepsilon} \to v$$
 uniformly on S_{δ} , $|S \setminus S_{\delta}| < \delta$,

for any $\delta > 0$. Upon rescaling we find: There exists $\varepsilon_0 > 0$ such that

$$|(z_{\varepsilon}\rho)(x',x_n)-(z\rho)(x',0)|<\delta \text{ on } S^{\varepsilon}_{\delta}, \quad |S^{\varepsilon}\setminus S^{\varepsilon}_{\delta}|<\varepsilon\delta, \quad \text{for all } \varepsilon<\varepsilon_0,$$

where, for any set $E \in \mathbb{R}^n$, $E^{\varepsilon} = \{(x', \varepsilon x_n) : (x', x_n) \in E\}$. Note that since $\Delta w_{\varepsilon} = \mu_{\varepsilon} - \nu_{\varepsilon}$ with $\operatorname{supp} \nu_{\varepsilon} \subset \Gamma_{\varepsilon}$ and $z_{\varepsilon} = 0$ on Γ_{ε} ,

$$\int_{\Omega} \Delta w_{\varepsilon} \rho z_{\varepsilon} dx = \int_{\Omega} \rho z_{\varepsilon} d\mu_{\varepsilon}$$

This allows us to compute

$$\left| \int_{\Omega} (z_{\varepsilon}\rho - z\rho) d\mu_{\varepsilon} \right| \leq \int_{S_{\delta}^{\varepsilon}} |z_{\varepsilon}\rho - z\rho| d\mu_{\varepsilon} + 2 ||z\rho||_{L^{\infty}} \int_{S^{\varepsilon} \setminus S_{\delta}^{\varepsilon}} d\mu_{\varepsilon}.$$

34 / 47

The first term converges to 0 because $z_{\varepsilon}\phi$ converges to $z\phi$ uniformly on S_{δ}^{ε} and the last term is smaller than $C\delta$ for arbitrary $\delta > 0$. So, $\left|\int_{\Omega}(z_{\varepsilon}\rho - z\rho)d\mu_{\varepsilon}\right|$ should be converge to 0.

Finally, we are done if we prove

$$\lim_{\varepsilon \to 0} \int_{\Omega} z \rho(x', 0) d\mu_{\varepsilon} = cap_{\nu}(T) \int_{\Gamma} z \rho d\sigma.$$

Definition (Uniform distribution mod 1)

- Let $\{x_j\}_{j=1}^{\infty}$ be given sequence of real numbers. For a positive integer N and a subset E of [0,1], let the counting function $A(E; \{x_j\}; N)$ be defined as the numbers of terms x_j , $1 \le j \le N$, for which $x_j \in E \pmod{1}$.
- **②** The sequence of real numbers {x_j} is said to be uniformly distributed modulo 1 if for every pair a, b of real numbers with 0 ≤ a < b ≤ 1 we have</p>

$$\lim_{N \to \infty} \frac{A\left([a, b); \{x_j\}; N\right)}{N} = b - a.$$

(日) (部) (注) (注) (言)

Lemma (Weyl's criterion)

A sequence $\{x_j\}_{j=1}^{\infty}$ is uniformly distributed mod 1 if and only if

$$\frac{1}{N}\sum_{j=1}^{N}e^{2\pi i l x_j} \to 0, \text{ as } N \to \infty,$$

for any nonzero $l \in \mathbb{Z}$.

From the Weyl's criterion, we can easily check that the sequence $\{k\alpha\}_{k\in\mathbb{N}}$ is uniformly distributed modulo 1 sense if α is a irrational number. In other words, the sequence $\{k\alpha\}$ satisfies the following:

$$A([a,b); \{x_j\}, N) = (b-a)N(1+\rho(N^{-1})),$$

But, we cannot assert that above is true when the length of interval is shrinking as $j \to \infty$. This is a much stronger result that relies on deeper arithmetic properties of α .

Definition

Let $\{x_j\}_{j=1}^\infty$ be a sequence of real numbers. The discrepancy of its N first elements is the number

$$D_N(\{x_j\}_{j=1}^N) = \sup_{0 \le a < b \le 1} \left| \frac{A([a,b); \{x_j\}_{j=1}^\infty, N)}{N} - (b-a) \right|.$$

If $x_j = j\alpha$, we simply write $D_N(\alpha)$.

Theorem (Kesten, 1964)

$$\frac{ND_N(\alpha)}{\log N \log(\log N)} \to \frac{2}{\pi^2}$$

in measure w.r.t. α as $N\to\infty.$ In particular, this result is true for a.e. α in a bounded set.

Corollary

For a.e. $\alpha \in \mathbb{R}$ holds

$$D_N(\alpha) = O\left(\frac{\log^{2+\delta} N}{N}\right),$$

for any $\delta > 0$.

Definition

If $\alpha \in \mathbb{R}$ satisfies the condition above, then we write

 $\alpha \in \mathcal{A}.$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の 4 で 40 / 47

Lemma

Let $\alpha = (\alpha_1, \dots, \alpha_m)$ be any vector in \mathbb{R}^m . Suppose that $E \subset \mathbb{R}^m$ is a (regular) subset with positive measure. Suppose also that $\alpha_i \in \mathcal{A}$, for at least one $i \in \{1, \dots, m\}$. Let

$$N(\varepsilon) = \# (E \cap \mathbb{Z}^m)$$

$$A(\varepsilon^p, c) := \# \{ k' \in E \cap \mathbb{Z}^m : t(k') / \mathbb{Z} = \in (c, c + \varepsilon^p) / \mathbb{Z} \}$$

Then for any 0 ,

 $A(\varepsilon^p,c)=(1+\rho(\varepsilon))N(\varepsilon)\varepsilon^p, \text{ for some }\rho \text{ such that }\rho(0^+)=0.$

Proof.

Suppose first that E is a cube, $E=x+(a,b)^m.$ Without loss of generality, we may assume $\alpha_m\in \mathcal{A}.$

Let

$$S_{\varepsilon}' := \{k' \in \mathbb{Z}^{m-1} : (k', k_m) \in \varepsilon^{-1}E, \ \text{ for some } k_m \in \mathbb{Z}\}.$$

If $k'\in S'_{\varepsilon}$, there exists integers m_{ε} and M_{ε} such that

$$(k',k_m) \in (\varepsilon^{-1}E) \cap \mathbb{Z}^m, \text{ for } m_{\varepsilon} \leq k_m \leq M_{\varepsilon}.$$

Hence we have

$$N(\varepsilon) = (\#S'_{\varepsilon})H_{\varepsilon}, \quad H_{\varepsilon} = M_{\varepsilon} - m_{\varepsilon}.$$

proof continued.

proof continued.

Let

$$A_{k'}(\varepsilon^p, c) = \#\{k_m : \alpha' \cdot k' + \alpha^m k_m \in (c, c + \varepsilon^p) / \mathbb{Z}, m_\varepsilon \le k_m \le M_\varepsilon\},\$$

Then,

$$A(\varepsilon^p, c) = \sum_{k' \in S'_{\varepsilon}} A_{k'}(\varepsilon^p, c).$$

From the definition of $A(\varepsilon^p,t),$ we conclude that

$$A_{k'}(\varepsilon^p, c) = \#\{k_m : \alpha' \cdot k' + \alpha_m k_m \in (c, c + \varepsilon^p) / \mathbb{Z}, m_\varepsilon \le k_m \le M_\varepsilon\}$$
$$= \#\{k_m : k_m \alpha_m \in (\tilde{c}, \tilde{c} + \varepsilon^p) / \mathbb{Z}, \ 1 \le k_m \le H_\varepsilon + 1\}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ● ○ ● ● ●

44 / 47

for some \tilde{c} .

proof continued.

By applying Kesten's theorem to the set $\{k_m : k_m \alpha_m \in [\tilde{c}, \tilde{c} + \varepsilon^p] / \mathbb{Z}, \ 1 \le k_m \le H_{\varepsilon} + 1\}$, we have

$$\left| \frac{A_{k'}(\varepsilon^p, c))}{H_{\varepsilon}} - |(\tilde{c}, \tilde{c} + \varepsilon^p)| \right|$$

= $\left| \frac{A_{k'}(\varepsilon^p, c)}{H_{\varepsilon}} - \varepsilon^p \right| \le D_{H_{\varepsilon}}(\alpha_m) = o\left(H_{\varepsilon}^{-p}\right), \quad 0$

And hence

$$\begin{split} \left|\frac{A(\varepsilon^p,c)}{N(\varepsilon)} - \varepsilon^p \right| &\leq \frac{H_{\varepsilon}}{N_{\varepsilon}} \sum_{k' \in S'_{\varepsilon}} \left|\frac{A_{k'}(\varepsilon^p,c)}{H_{\varepsilon}} - \varepsilon^p \right| \\ &\leq \frac{H_{\varepsilon}}{N_{\varepsilon}} \sum_{k' \in S'_{\varepsilon}} D_{H_{\varepsilon}}(\alpha^m) = D_{H_{\varepsilon}}(\alpha_m) = o(\varepsilon^p), \text{ as } \varepsilon \to 0. \end{split}$$

proof continued.

It can be easily extended when E is a finite union of cubes. Finally, when E is just measurable, approximate E by a finite union of cubes U. Then, by applying the previous result, we get the conclusion. Uniform Distribution Sequence

Thank You!

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ▲ ■ ⑦ Q (~ 47/47