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Introduction

Obstacle Problems

Let Ω be a bounded, open and connected domain in Rn.

Definition

For any given function ψ ∈ C2(Ω)(or ψ ∈ H1(Ω)), known as the obstacle, and
g ∈ H1(Ω) satisfying the compatibility condition ψ ≤ g on ∂Ω, we say u is the
solution of the obstacle problem if u is the minimizer of the functional

J(v) =

∫
Ω

|∇v|2 + 2fvdx

where v is in K = {v ∈ H1(Ω) : v ≥ ψ in Ω, v − g ∈ H1
0 (Ω)}.
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Introduction

Obstacle Problems

If the obstacle is only defined on (n-1)-dimensional manifold Γ then we call such
problems Signorini problem or Thin obstacle problem.

Definition

For any given function ψ ∈ C2(Ω)(or ψ ∈ H1(Ω) ∩ L∞(Ω)), g ∈ H1(Ω) satisfying
the compatibility condition ψ ≤ g on ∂Ω, we say u is the solution of the obstacle
problem if u is the minimize of the functional

J(v) =

∫
Ω

|∇v|2 + 2fvdx

where v is in K = {v ∈ H1(Ω) : v ≥ ψ on (Γ ∩ Ω), v − g ∈ H1
0 (Ω)}.

In this talk, we assume that n ≥ 3 and g = 0.
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Introduction

Periodical Background

For a given open subset T of B 1
2

, we define T kε by εk + aεT and Tε by ∪T kε
where k ∈ Zn and aε < ε.
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Introduction

Periodical Background

For any subset D of Rn and for any ψ ∈ H1(Rn), we define Dε = D ∩ Tε and

ψε = ψχDε =

{
ψ(x) if x ∈ Dε,
0 if x 6∈ Dε
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Introduction

Highly Oscillating Obstacle Problem

Let uε be the solution of the obstacle problem with obstacle ψε. More precisely,
uε is the minimizer of the functional

J(v) =

∫
Ω

|∇v|2 + 2fvdx (Mε)

for v ∈ Kε = {v ∈ H1(Ω); v ≥ ψε in Ω, v − g ∈ H1
0 (Ω)}.

Then our main problem is to determine the limit u of the solution uε in terms of a
limit equation it solves.

Definition

1 If D = Ω, then we call (Mε) a highly oscillating obstacle problem.

2 If D = Γ, (n− 1)-dimensional manifold, then we call (Mε) a highly
oscillating thin obstacle problem.

Actually, the limit behavior of uε is related with the decay rate aε of holes.
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Introduction

Averaged Capacity

Definition

Let A be any compact subset of Rn. Then, for any n ≥ 3, the capacity of A is
defined as follow

cap(A) = inf

{∫
Rn
|∇ρ|2dx : ρ ∈ C∞0 (Rn), ρ ≥ 1 on A

}
Now we define the new concept of the capacity to describe the equation that
satisfies the limit u of uε.
Let Γ be a hyper plane in Rn with normal ν ∈ Sn−1. and let

Γ(s) = Γν(s) = Γ + sν.

be the family of hyper-planes.
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Introduction

Averaged Capacity
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Introduction

Averaged Capacity

Definition (Averaged capacity)

If T ∈ Rn and Γ = {(x− x0) · ν = 0},

f(s) = cap(T ∩ Γ + sν)

is integrable, then we set

capν(T ) =

∫ ∞
−∞

f(s)ds

and call this quantity the averaged capacity of T with respect to ν.
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Introduction

Main Theroem

Theorem

Let n ≥ 3 and uε be the solution of (Mε) when
D = Γ = {x ∈ Rn : (x− x0) · ν = 0}. We set we set aε = ε

n
n−1 . Then uε → u

weakly in H1
0 (Ω) and u is the unique minimizer of

Jν(v) =

∫
Ω

|∇v|2 + 2fvdx+ capν(T )

∫
Γ

(
(ψ − v)+

)2
dσ, v ≥ 0 (M)

for a.e. ν ∈ Sn−1.
In particular, if f is non-negative, then u is the solution of

−4u+ capν(T )(ψ − u)+dσ + f = 0.
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Introduction

Related Works

1 In 1997, Cioranescu and Murat proved that if D = Ω and aε = ε
n
n−2 , then

the solution uε of (Mε) converges to u and u satisfies the following equation:

−4u+ µu = f in Ω

for some constant µ.
2 They also proved that if D = {xn = 0} and aε = ε

n−1
n−2 , then the limit u

satisfies
−4u+ µudδ{xn=0} = f in Ω.

3 In 2008, Caffarelli and Lee proved the similar result for the fully nonlinear
operator F when D = Ω. The decay rate aε is determined by the constant λ
that makes

V (x) = |x|−λΦ(
x

|x|
)

a solution of F (D2V ) = 0 except the singular point.
4 In 2009, Caffarelli and Mellet proved the similar result when T = T (k, ω) is

distributed randomly. If cap(T (k, ω)) is stationary ergodic, D = Ω, and
aε = ε

n
n−2 then we have similar result to (1) and the limit doesn’t depend on

ω.
11 / 47



Proof of Main Theroem

Corrector

Proposition (Existence of Corrector)

Let Γ = {x ∈ Rn; (x− x0) · ν = 0} and let aε = ε
n
n−1 . Then, for almost all

ν ∈ Sn−1, there exists a sequence of functions wε satisfying

1 wε = 1 on Γε
2 wε → 0 weakly in H1

0 (Ω)

3 For any sequence zε ∈ H1
0 (Ω) such that zε = 0 on Γε, ‖zε‖L∞(Ω) ≤ C and

zε → z weakly in H1
0 (Ω) there holds

lim
ε→0

< 4wε, ρzε >H−1,H1
0
= capν(T )

∫
Γ

ρzdσ (2.1)

for all ρ ∈ C∞0 (Ω).
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Proof of Main Theroem

Proof of Theorem

Lemma (Lower semicontinuity of the Energy)

Let zε ∈ H1
0 be a sequence which is bounded uniformly on ε, zε → z weakly in

H1
0 and zε = 0 on Γε. Then, we have

lim inf

∫
Ω

|∇zε|2dx ≥
∫

Ω

|∇z|2dx+ capν(T )

∫
Γ

z2dσ.

The last term comes from the choice of the test function zε.

Sketch of proof.

From the proposition,∫
Ω

|∇wε|2ρ2 → capν(T )

∫
Γ

ρ2dσ, ρ ∈ C∞0 (Ω)

Apply this to 0 ≤
∫

Ω
|∇(zε − wερ)|2dx and then apply ρ = zε. Then, we get the

conclusion.
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Proof of Main Theroem

Proof of Theorem

Lemma

Let uε be solution of (Mε). Then we have

lim inf

∫
Ω

|∇uε|2dx ≥
∫

Ω

|∇u|2dx+ capν(T )

∫
Γ

(
(ψ − u)+

)2
dσ.

Proof.

We have the identity uε = −(ψ − uε)+ + (ψ − uε)− + ψ. Since uε ≥ ψ on Γε,
(ψ − uε)+ = 0 on Γε, we have

lim inf

∫
Ω

|∇(ψ − uε)+|2dx ≥
∫

Ω

|∇(ψ − u)+|2dx+ capν(T )

∫
Γ

(
(ψ − u)+

)2
dσ.

Then, the lemma follows from above and the general weak lower
semi-continuity.
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Proof of Main Theroem

Proof of Theorem

Lemma

Let uε be solution of (Mε). Then we have

lim sup

∫
Ω

|∇uε|2dx ≤
∫

Ω

|∇v|2dx+ capν(T )

∫
Γ

v2dσ.

for all v ∈ C∞0 (Ω) and v ≥ 0.

Sketch of Proof.

1 For any given v, let vε = (wε − 1)(ψ − v)+ + (ψ − v)− + ψ. Then
vε ∈ Kε = {v ∈ H1

0 (Ω); v ≥ ψε}.
2 Since wε converges to 0 weakly in H1

0 (Ω), vε → v weakly in H1
0 (Ω).

3 From the minimality of uε, J(uε) ≤ J(vε).

4 Finally, by using the proposition, we have

lim sup J(vε) ≤ Jν(v).
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Proof of Main Theroem

Proof of Theorem

Proof of Main Theorem.

1 Since ψ+ is in the set Kε for all ε, J(uε) ≤ J(ψ+) and hence ‖uε‖H1 is
bounded uniformly on ε. From this, we can extract a subsequence uεj which
converges to u weakly in H1.

2 From previous two lemmas,∫
Ω

1

2
|∇u|2 + fudx+ capν(T )

1

2

∫
Γ

((ψ − u)+)2dσ

≤ lim inf
ε→0

∫
Ω

1

2
|∇uε|2 + fuεdx ≤ lim sup

ε→0

∫
Ω

1

2
|∇uε|2 + fuεdx

≤
∫

Ω

1

2
|∇v|2 + fvdx+ capν(T )

∫
Γ

((ψ − v)+)2dσ,

for all v ∈ C∞0 (Ω) with v ≥ 0.
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Construction of Corrector

Construction of Correctors

We are going to construct wε in proposition by defining wε locally near the
intersection between Γ and T kε .
Let γkε = Γ ∩ T kε and let wkε be the restriction of wε to Qε(εk) given by

wkε = 1 on γkε
∆wkε = 0 in Bε/2 \ γkε
wkε = 0 in Qε \Bε/2,
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Construction of Corrector

Construction of Correctors

If we define wε =
∑
k w

k
ε , the energy of wε is given by∫

Ω

|∇wε|2dx =
∑
k

∫
Ω

|∇wkε |2dx.
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Construction of Corrector

Construction of Correctors

So, we need to calculate the energy
∫

Ω
|∇wkε |2dx.

To make our problem more simple, we assume Γ = {x · ν = 0}.
Let gε(s) =

∫
Bε/2
|∇wsε|2dx where wsε solves the local corrector equation defined

as follow
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Construction of Corrector

Construction of Correctors

Define w̃sε = wsε(
x
aε

) and Gε(s) =
∫
Bε/aε

|∇w̃sε|2dx. Then, we have

gε(s) = an−2
ε Gε(s)
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Construction of Corrector

Construction of Correctors

Lemma

Gε(s) converges to f(s) = cap (T ∩ Γν(s)) as ε→ 0 where Γν(s) = Γ + (s)ν.
Moreover, the convergence is uniform on s.

From now on, we assume νn 6= 0.
We define

Γ′E = projn−1(E ∩ Γ), Zε = ε−1Γ′E ∩ Zn−1.

Then Γ may be represented as

Γ ∩ E = {(x′, α · x′);x′ ∈ Γ′E}, α = (−ν1/νn, · · · ,−νn−1/νn)

21 / 47



Construction of Corrector

Construction of Correctors

Note that σ(Γ′E) = νnσ(E ∩ Γ) where σ is the surface measure induced by Rn.
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Construction of Corrector

Construction of Correctors

Lemma

For any measurable subset E of Rn and for a.e. ν ∈ Sn−1,∫
E

|∇wε|2dx→ σ(Γ ∩ E) capν(T ).

if we choose aε = ε
n
n−1 .
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Construction of Corrector

Construction of Correctors

Proof.

Note that (εk + Tε) ∩ Γ 6= ∅ (k = (k′, kn)) is equivalent to the condition

ε (α · k′ − kn) ∈ (aεc, aεd).
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Construction of Corrector

Construction of Correctors

proof continued.

Let t = t(k′) = ε (α · k′ − kn). Then t ∈
(
− ε2 ,

ε
2

)
.

And, since
−εk + ((εk + Tε) ∩ Γ) = Tε ∩ (t(k′)en + Γ) ,

the shape of ((εk + Tε) ∩ Γ) is completely determined by t = t(k′). Hence we
have ∫

Bε/2(εk)

|∇wkε |2dx =

∫
Bε/2

|∇w(t/aε)νn
ε |2dx = gε((t/aε)νn).
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Construction of Corrector

Construction of Correctors

proof continued.

For given any M ∈ N, let δ = d−c
M and I(i) defined as follow:

26 / 47



Construction of Corrector

Construction of Correctors

proof continued.

Since ∪Mi=1I(i) = (c, d), we have∫
E

|∇wε|2dx =

M∑
i=1

∑
t(k′)/aε∈I(i)

∫
Bε/2(εk)

|∇wkε |2dx

Let Nε = #Zε. And Ai(ε) = #{t(k′)/aε ∈ I(i) : k′ ∈ Zε}.
Note that t(k′)/ε are distributed in a unit interval.
We assume that those points distributed uniformly. In other words, we have

Ai(ε) = (1 + ρ(ε))N(ε)
aεδ

ε
, ρ(0+) = 0.
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Construction of Corrector

Construction of Correctors

proof continued.

From those, we have∫
E

|∇wε|2dx =

M∑
i=1

∑
t(k′)/aε∈I(i)

∫
Bε/2(εk)

|∇wkε |2dx

≤
M∑
i=1

Ai(ε) sup
t/aε∈I(i)

gε((t/aε)νn)

≤ (1 + ρ(ε))N(ε)
aεδ

ε

M∑
i=1

sup
t/aε∈I(i)

gε((t/aε)νn)

≤ (1 + ρ̃(ε))
σ(Γ′E)

εn−1

aεδ

ε

M∑
i=1

an−2
ε sup

t/aε∈I(i)
Gε((t/aε)νn),

where ρ̃(0+) = 0.
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Construction of Corrector

Construction of Correctors

proof continued.

Taking limit superior on both sides we obtain, by the uniform convergence of Gε,

lim sup
ε→0

∫
E

|∇wε|2dx ≤ σ(Γ′E)
(d− c)
M

M∑
i=1

sup
t̃∈Ĩ(i)

f(t̃νn).

Then, passing to the limit M →∞,

lim sup
ε→0

∫
E

|∇wε|2dx ≤ σ(Γ′E)

∫
f(t̃νn)dt

=
σ(Γ′E)

νn

∫
f(s)ds = σ(Γ ∩ E)

∫
f(s)ds.

In a completely analogous way, we find

lim inf
ε→0

∫
E

|∇wε|2dx ≥ σ(Γ ∩ E)

∫
f(s)ds.
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Construction of Corrector

Proof of Proposition

Proposition (Existence of Corrector)

Let Γ = {x ∈ Rn; (x− x0) · ν = 0} and let aε = ε
n
n−1 . Then, for almost all

ν ∈ Sn−1, there exists a sequence of functions wε satisfying

1 wε = 1 on Γε
2 wε → 0 weakly in H1

0 (Ω)

3 For any sequence zε ∈ H1
0 (Ω) such that zε = 0 on Γε, ‖zε‖L∞(Ω) ≤ C and

zε → z weakly in H1
0 (Ω) there holds

lim
ε→0

< 4wε, ρzε >H−1,H1
0
→ capν(T )

∫
Γ

ρzdσ (3.2)

for all ρ ∈ C∞0 (Ω).
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Construction of Corrector

Proof of Proposition

Lemma (Compact embedding with o(ε) error)

Suppose vε → v weakly in H1
0 (Ω) and let Γ = Ω ∩ {xn = 0}. Then

1

ε

∫ ε

0

∫
Γ

(vε(x
′, xn)− v(x′, 0))dx′dxn → 0.

Next we note that there exist measures µkε and νkε such that

∆wkε = µkε − νkε , suppµkε ⊂ ∂Bε(εk), supp νkε ⊂ γkε .

We define
µε =

∑
k

µkε .
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Construction of Corrector

Proof of Proposition

Lemma

For a.e. ν ∈ Sn−1, µε → capν(T )σ in the weakly star sense of measures. That is,

〈µε, ρ〉 → capν(T )

∫
Γ

ρdσ, for all ρ ∈ C∞c (Ω).

Proof.

Since (1− wε) is zero on Γε and 1 on ∪k∂Bε(εk) we get∫
Ω

dµε =

∫
Ω

∆wε(1− wε) =

∫
Ω

|∇wε|2dx ≤ C.

Thus µε → µ in the weak-* sense of measure for some finite measure µ.
Clearly, suppµ ⊂ Γ and,∫

E

dµ = lim
ε

∫
E

dµε =

∫
E

|∇wε|2dx→ capν(T )σ(E ∩ Γ)

tells us the shape of µ. 32 / 47



Construction of Corrector

Proof of Proposition

Let vε(x
′, xn) = (zερ)(x′, εxn) and v(x′, xn) = (zρ)(x′, 0). Then, from the

compact embedding lemma, we have

1

ε

∫ ε/2

−ε/2

∫
Π

|(zερ)(x′, xn)− (zρ)(x′, 0)|dx′dxn

=

∫ 1/2

−1/2

∫
Π

|(zερ)(x′, εxn)− (zρ)(x′, 0)|dx′dxn → 0

and thus

(zεφ)(x′, εxn) =: vε(x
′, xn)→ v(x′, xn) := (zρ)(x′, 0),

a.e. on S := Γ× (−1/2, 1/2).
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Construction of Corrector

Proof of Proposition

By Egoroff’s theorem we can assert the existence of a set Sδ such that

vε → v uniformly on Sδ, |S \ Sδ| < δ,

for any δ > 0.
Upon rescaling we find: There exists ε0 > 0 such that

|(zερ)(x′, xn)− (zρ)(x′, 0)| < δ on Sεδ , |Sε \ Sεδ | < εδ, for all ε < ε0,

where, for any set E ∈ Rn, Eε = {(x′, εxn) : (x′, xn) ∈ E}.
Note that since ∆wε = µε − νε with supp νε ⊂ Γε and zε = 0 on Γε,∫

Ω

∆wερzεdx =

∫
Ω

ρzεdµε.

This allows us to compute∣∣∣∣∫
Ω

(zερ− zρ)dµε

∣∣∣∣ ≤ ∫
Sεδ

|zερ− zρ|dµε + 2‖zρ‖L∞
∫
Sε\Sεδ

dµε.

34 / 47



Construction of Corrector

Proof of Proposition

The first term converges to 0 because zεφ converges to zφ uniformly on Sεδ and
the last term is smaller than Cδ for arbitrary δ > 0. So,

∣∣∫
Ω

(zερ− zρ)dµε
∣∣ should

be converge to 0.
Finally, we are done if we prove

lim
ε→0

∫
Ω

zρ(x′, 0)dµε = capν(T )

∫
Γ

zρdσ.
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Uniform Distribution Sequence

Uniform Distribution for the 1-dimensional sequence

Definition (Uniform distribution mod 1)

1 Let {xj}∞j=1 be given sequence of real numbers. For a positive integer N and
a subset E of [0, 1], let the counting function A (E; {xj};N) be defined as
the numbers of terms xj , 1 ≤ j ≤ N , for which xj ∈ E (mod 1).

2 The sequence of real numbers {xj} is said to be uniformly distributed
modulo 1 if for every pair a, b of real numbers with 0 ≤ a < b ≤ 1 we have

lim
N→∞

A ([a, b); {xj};N)

N
= b− a.
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Uniform Distribution Sequence

Uniform Distribution for the 1-dimensional sequence

Lemma (Weyl’s criterion)

A sequence {xj}∞j=1 is uniformly distributed mod 1 if and only if

1

N

N∑
j=1

e2πilxj → 0, as N →∞,

for any nonzero l ∈ Z.

From the Weyl’s criterion, we can easily check that the sequence {kα}k∈N is
uniformly distributed modulo 1 sense if α is a irrational number.
In other words, the sequence {kα} satisfies the following:

A([a, b); {xj}, N) = (b− a)N(1 + ρ(N−1)),
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Uniform Distribution Sequence

Uniform Distribution for the 1-dimensional sequence

But, we cannot assert that above is true when the length of interval is shrinking
as j →∞. This is a much stronger result that relies on deeper arithmetic
properties of α.

Definition

Let {xj}∞j=1 be a sequence of real numbers. The discrepancy of its N first
elements is the number

DN ({xj}Nj=1) = sup
0≤a<b≤1

∣∣∣∣A([a, b); {xj}∞j=1, N)

N
− (b− a)

∣∣∣∣ .
If xj = jα, we simply write DN (α).
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Uniform Distribution Sequence

Uniform Distribution for the 1-dimensional sequence

Theorem (Kesten,1964)

NDN (α)

logN log(logN)
→ 2

π2

in measure w.r.t. α as N →∞. In particular, this result is true for a.e. α in a
bounded set.

Corollary

For a.e. α ∈ R holds

DN (α) = O

(
log2+δ N

N

)
,

for any δ > 0.

Definition

If α ∈ R satisfies the condition above, then we write

α ∈ A.
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Uniform Distribution Sequence

Application to the Sequence {k′α}

40 / 47



Uniform Distribution Sequence

Application to the Sequence {k′α}

Lemma

Let α = (α1, · · · , αm) be any vector in Rm. Suppose that E ⊂ Rm is a (regular)
subset with positive measure. Suppose also that αi ∈ A, for at least one
i ∈ {1, · · · ,m}.
Let

N(ε) = # (E ∩ Zm)

A(εp, c) := #{k′ ∈ E ∩ Zm : t(k′)/Z =∈ (c, c+ εp)/Z}

Then for any 0 < p < 1,

A(εp, c) = (1 + ρ(ε))N(ε)εp, for some ρ such that ρ(0+) = 0.
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Uniform Distribution Sequence

Application to the Sequence {k′α}

Proof.

Suppose first that E is a cube, E = x+ (a, b)m. Without loss of generality, we
may assume αm ∈ A.
Let

S′ε := {k′ ∈ Zm−1 : (k′, km) ∈ ε−1E, for some km ∈ Z}.

If k′ ∈ S′ε, there exists integers mε and Mε such that

(k′, km) ∈ (ε−1E) ∩ Zm, for mε ≤ km ≤Mε.

Hence we have
N(ε) = (#S′ε)Hε, Hε = Mε −mε.
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Uniform Distribution Sequence

Application to the Sequence {k′α}

proof continued.
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Uniform Distribution Sequence

Application to the Sequence {k′α}

proof continued.

Let

Ak′(ε
p, c) = #{km : α′ · k′ + αmkm ∈ (c, c+ εp)/Z,mε ≤ km ≤Mε},

Then,
A(εp, c) =

∑
k′∈S′ε

Ak′(ε
p, c).

From the definition of A(εp, t), we conclude that

Ak′(ε
p, c) = #{km : α′ · k′ + αmkm ∈ (c, c+ εp)/Z,mε ≤ km ≤Mε}

= #{km : kmαm ∈ (c̃, c̃+ εp)/Z, 1 ≤ km ≤ Hε + 1}

for some c̃.
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Uniform Distribution Sequence

Application to the Sequence {k′α}

proof continued.

By applying Kesten’s theorem to the set
{km : kmαm ∈ [c̃, c̃+ εp]/Z, 1 ≤ km ≤ Hε + 1}, we have∣∣∣∣Ak′(εp, c))Hε

− |(c̃, c̃+ εp)|
∣∣∣∣

=

∣∣∣∣Ak′(εp, c)Hε
− εp

∣∣∣∣ ≤ DHε(αm) = o
(
H−pε

)
, 0 < p < 1.

And hence∣∣∣∣A(εp, c)

N(ε)
− εp

∣∣∣∣ ≤ Hε

Nε

∑
k′∈S′ε

∣∣∣∣Ak′(εp, c)Hε
− εp

∣∣∣∣
≤ Hε

Nε

∑
k′∈S′ε

DHε(α
m) = DHε(αm) = o(εp), as ε→ 0.
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Uniform Distribution Sequence

Application to the Sequence {k′α}

proof continued.

It can be easily extended when E is a finite union of cubes.
Finally, when E is just measurable, approximate E by a finite union of cubes U .
Then, by applying the previous result, we get the conclusion.

46 / 47



Uniform Distribution Sequence

Thank You!
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